Multifunctional Flexible PVDF-TrFE/BaTiO3 Based Tactile Sensor for Touch and Temperature Monitoring
نویسندگان
چکیده
This paper presents an enhanced piezoelectricity based sensor for touch and temperature sensing. The sensor is realized over flexible polyimide film, making it suitable for application like e-skin. The sensing material is composed of Polyvinylidene Fluoride-Trifluoroethylene (PVDF-TrFE) and Barium Titanate (BaTiO3) nanoparticles. While, the piezoelectric polymer PVDF-TrFE ensures the flexibility of sensor, BaTiO3 imparts high sensitivity to touch and temperature. The sensor is tested over temperature range which is common in daily life and the sensitivity to touch is characterized by tapping mode using fixed load. The results confirms the advantage of using poly-ceramic composite over piezoelectric polymer. Keywords— flexible electronics; e-skin; tactile sensing
منابع مشابه
Tactile-Sensing Based on Flexible PVDF Nanofibers via Electrospinning: A Review
The flexible tactile sensor has attracted widespread attention because of its great flexibility, high sensitivity, and large workable range. It can be integrated into clothing, electronic skin, or mounted on to human skin. Various nanostructured materials and nanocomposites with high flexibility and electrical performance have been widely utilized as functional materials in flexible tactile sen...
متن کاملCharacteristics of a pressure sensitive touch sensor using a piezoelectric PVDF-TrFE/MoS2 stack.
A new touch sensor device has been demonstrated with molybdenum disulfide (MoS2) field effect transistors stacked with a piezoelectric polymer, polyvinylidene fluoride-trifluoroethylene (PVDF-TrFE). The performance of two device stack structures, metal/PVDF-TrFE/MoS2 (MPM) and metal/PVDF-TrFE/Al2O3/MoS2 (MPAM), were compared as a function of the thickness of PVDF-TrFE and Al2O3. The sensitivity...
متن کاملMultifunctional sensor based on organic field-effect transistor and ferroelectric poly(vinylidene fluoride trifluoroethylene)
A multifunctional sensor that responds to all – static/quasi-static or dynamic temperature or force – is reported. The sensor is based on a ferroelectric poly(vinylidene fluoride trifluoroethylene) (P(VDF-TrFE)) capacitor connected to the gate of organic field-effect transistor (OFET). Both, the P(VDF-TrFE) capacitance and the output voltage of the P(VDF-TrFE)/OFET sensor exhibit a logarithmic ...
متن کاملP(VDF-TrFE) Polymer-Based Thin Films Deposited on Stainless Steel Substrates Treated Using Water Dissociation for Flexible Tactile Sensor Development
In this work, deionized (DI) water dissociation was used to treat and change the contact angle of the surface of stainless steel substrates followed by the spin coating of P(VDF-TrFE) material for the fabrication of tactile sensors. The contact angle of the stainless steel surface decreased 14° at -30 V treatment; thus, the adhesion strength between the P(VDF-TrFE) thin film and the stainless s...
متن کاملSensitivity of Pressure Sensors Enhanced by Doping Silver Nanowires
We have developed a highly sensitive flexible pressure sensor based on a piezopolymer and silver nanowires (AgNWs) composite. The composite nanofiber webs are made by electrospinning mixed solutions of poly(inylidene fluoride) (PVDF) and Ag NWs in a cosolvent mixture of dimethyl formamide and acetone. The diameter of the fibers ranges from 200 nm to 500 nm, as demonstrated by SEM images. FTIR a...
متن کامل